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CONCLUSIONS & FUTURE WORK
• We demonstrate a fully automated workflow for automated phosphoproteome profiling suitable for a range of samples
• SAX magnetic beads provide a suitable alternative for high volume but low concentration samples such as urine, with the option of 

fractionation (pH) for deep proteome profiling
• HILIC chemistry is potentially suitable for high content samples or where precipitation is not desirable 
• We have optimized protocols and buffers for automated enrichment using three magnetic bead variants
• Reduction of glycolic acid in the binding buffer improved the performance of Zr-IMAC, and for the conditions described in this study it 

outperformed Ti-IMAC, likely due to increased capture of mono-phosphorylated peptides 
• Analysis of the properties of enriched peptides showed that dioxide enriched samples showed a vastly different profile than that of IMAC
• We are evaluating buffer conditions with the aim of combining dioxide and IMAC chemistry in an attempt to improve coverage for single-shot 

phosphoproteomics by enriching single- and multi-phosphorylated peptides
• The fully automated platforms will be applied to a range of samples to identify the best conditions for each sample type

AUTOMATED CLEAN-UP TO PHOSPHOPEPTIDE ENRICHMENT 
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For example, the use of SAX (Strong Anion 
Exchange) bead chemistry can be used for 
capture of proteins and peptides from dilute 
samples such as urine and ability to potentially 
apply pH based fractionation, but is not suitable 
for sample preparation using SDS (accumulation 
on beads). 

HILIC requires lower dilution to capture proteins, 
and is therefore potentially more suitable for 
high-content samples, and can be extended to 
the clean-up of peptides and glycans. 

The benefits of coupling of PAC to phosphopeptide 
enrichment will only require 30 to 40 minutes labour. 
LC was performed using an EvoSep 1 with 21 minute 
gradient, coupled to a ThermoFisher Orbitrap HF-X 
15000 resolution. 

45 min per 96 samples

Protein Aggregation Capture Protocol Phosphopeptide Enrichment Protocol

We recently demonstrated the rapid and 
automated enrichment of phosphopeptides 
using MagReSyn® Ti-IMAC HP (prototype 
supplied by ReSyn Biosciences) with clean-up 
using PAC of proteins extracted with GdHCL 
using MagReSyn® Amine as the precipitation 
nucleus. 

AUTOMATED PROTEIN AND PEPTIDE CLEAN-UP: SAMPLE DEPENDENT ALTERNATIVES

When comparing the range of workflows for automated protein clean-up we noted little difference in the coverage of samples using the new 
protocols developed in this study (above left). SAX did show a slightly increased recovery, but we believe similar recovery can be achieved using 
TFA to aid elution with PAC and HILIC (experiments in progress). On-bead HILIC and SAX digestion showed similar digest efficiency as in solution 
digestion (above centre), and the further optimisation of this step is currently underway. Venn overlaps (above right) of the data indicated the 
highest number of unique peptides was identified by SAX, followed by in-solution digestion. The sample preparation techniques do not appear 
to show any bias with respect to peptide properties (figures below). We intend to investigate the coupling of the optimized protocols to 
automated phosphopeptide enrichment. 
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HILIC Clean-up Protocol SAX Clean-up Protocol

Although the above developed protocol is suitable for phosphopeptide enrichment from a range of biological samples, we have started 
investigating the use of alternate clean-up and enrichment tools to further extend the workflow to a diverse range of biological samples, and to 
try and increase possible coverage offered by this workflow. 
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AUTOMATED PHOSPHOPEPTIDE ENRICHMENT: INCREASING SAMPLE COVERAGE
Magnetic beads from ReSyn Biosciences have been extensively used phosphopeptide enrichment, with Ti-IMAC being preferred by the majority 
of research groups (Baath et al., 2019; Niemi et al., 2019., Yángüez et al., 2018). Although the product has been shown to provide a high number 
of phosphopeptide identifications, specificity can vary based on sample preparation. Recently, the Olsen group has reported >99% specificity 
using Ti-IMAC by decreasing the bead to protein ratio, thereby improving competition of phosphopeptides for the support material. However, 
the impact of this approach on total coverage is not yet known. We therefore use the recommended ratio provided by the supplier for the 
optimization of phosphopeptide enrichment. ReSyn Biosciences offers a range of products offering complimentary sample coverage, the 
challenges and benefits of which are outlined below. 

Sample preparation was automated on a KingFisher® Duo 
magnetic bead handling station and analysed using an SCIEX 
TripleTOF 6600 coupled to a Dionex nanoRSLC using 60 
minute nano-flow gradients. Data was searched using Sciex 
Protein Pilot (Shilov et al., 2007) against a Uniprot Swiss Prot 
H. sapiens database supplemented with sequences of 
common contaminant proteins. A 1% FDR cut-off was 
applied at the PSM, peptide and protein levels.

5µg 10µg 20µg 50µg 200µg

Ti-IMAC - HP 1802 3295 3974 5729 8186
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INTRODUCTION
The requirement for robust and routine high throughput sample preparation workflows has become a necessity as clinical proteomics reaches 
maturity. The workflows will enable processing of large sample cohorts with the throughput, robustness and reproducibility required for a 
routinized laboratory setting. In this study we illustrate a fully automated phosphoproteomics workflow, with further elaboration on options for 
clean-up from dilute and high content samples, using SAX and HILIC respectively. We further demonstrate improved phosphoproteome coverage 
using a range of bead enrichment chemistries. Magnetic beads are considered desirable since these are easy to handle, simple to automate, 
linearly scalable, and high throughput compatible on a range of magnetic bead handling stations.
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We recently reported (ASMS 2019) on extensive optimization of binding buffer for 
phosphopeptide enrichment, in particular the effect of hydroxy acids on the capacity 
and specificity. Initially performed on a simple protein mixture, we confirm the effect of 
the new binding buffers using a complex lysate. Proteins from HEPG2 cells were 
extracted by sonication with pre-chilled OPB (50mM TEAB, 1% SDC, 10mM TCEP, 40mM 
CAA). Proteins were precipitated overnight with acetone, and resuspended in 50mM 
AmmBic containing 1% SDC. Protein (10mg) was digested overnight and peptides 
desalted using Oasis HLB cartridges. 

Phosphopeptide enrichment was performed from 200 µg of 
lyophilized protein digest on a KingFisher Duo, and samples analysed 
using a Dionex nanoRSLC using 60 minute nano-flow gradients, 
coupled to a SCIEX 6600 TripleTOF. Data was searched using 
Proteome Discoverer (MASCOT) with 50 ppm peptide tolerance, 0.2 
Da tolerance, and 2 miss cleavages. Peptide properties were extracted 
using a custom R-script. 

Buffer Binding Buffer

Standard 80% ACN, 5% TFA, 1M Glycolic Acid

Ti-IMAC 80% ACN, 5% TFA, 0.1M Lactic Acid

Zr-IMAC 80% ACN, 5% TFA, 0.1M Glycolic Acid

TiO2 50% ACN, 0.1% Acetic Acid, 0.1M Glycolic Acid

Product Active Group Advantages Disadvantages Notes

Ti-IMAC Titanium ions High Coverage Sensitive to contaminants Selective towards mono-phosphorylated peptides

Zr-IMAC Zirconium ions High Coverage (New Buffer) Sensitive to chelating agents Selective towards mono-phosphorylated peptides

Ti-Dioxide Titanium dioxide nanoparticles Resistant to Contaminants Lower capacity Bias towards multiply phosphorylated peptides

Zr-Dioxide Zirconium dioxide nanoparticles Resistant to Contaminants Low capacity Bias towards multiply phosphorylated peptides

Ti-IMAC Zr-IMAC TiO2
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The use of optimized buffers for Ti-IMAC and Zr-IMAC increase sample 
coverage, with Zr-IMAC increasing by 20%, while retaining a high 
specificity of over 95% (above). The increased coverage offered by 
TiO2 also resulted in a decrease in the specificity to around 75% 
(above). Standard enrichment with TiO2 captures multi- 
phosphorylated peptides (left), while the optimized buffer system 
normalizes to the standard IMAC profile. It appears that the increased 
coverage for Zr-IMAC results from improved capture of mono-
phosphorylated peptides at the expense of multi-phosphorylated.  

When comparing the phosphopeptide overlaps for the standard and optimized buffers, we can see that the Zr-IMAC and TiO2 show significant 
improvement in coverage with the new buffer systems (above left). Analysis of peptide properties (above right for standard buffer, below right 
optimized buffers) further elucidates selectivity of the three phosphopeptide enrichment chemistries. With standard buffers Zr-IMAC shows 
higher selectivity for hydrophobic residues, while the use of optimized buffer for Ti-IMAC increases hydrophobic residues (a possible reason for 
improved coverage using this new buffer system). Optimized buffers for Ti-IMAC and Zr-IMAC normalized their selectivity for the peptides 
(highly overlapping profiles, below right). The new buffer system for TiO2 provides a vastly different peptide property profile, increasing 
selectivity for acidic peptides and shifting towards hydrophilic peptides. 
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Conditions Amine (PAC)

Bind 50-80% ACN (or  EtOH) pH 8

Wash 80% EtOH & 95% ACN

Digest LysC/Trp (1-4hr)

Elute H2O or  0.5% TFA or  DMSO

Range (automated) sub 1µg - 200µg

Extraction SDS, NP40, Tween, SDC

Clean-up of Proteins

Fractionation NA

Top-down NA

HILIC

15% ACN, 100mM NH4Ac pH 4.5

95% ACN

LysC/Trp (1-4hr)

1% TFA

5µg - 0.5mg

SDS, NP40, Tween, SDC
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